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ABSTRACT

A method of scaling is described that easily converts the aeroelastic equations of motion of a full-sized aircraft into ones of

a wind-tunnel model. To implement the method, a set of rules is provided for the conversion process involving matrix
operations with scale factors. In addition, a technique for analytically incorporating a spring mounting system into the

aeroelastic equations is also presented. As an example problem, a finite element mode[ of a full-sized aircraft is introduced
from the High Speed Research (HSR) program to exercise the scaling method. With a set of scale factor values, a brief

outline is given of a procedure to generate the first-order aeroservoelastic analytical model representing the wind-tunnel

model. To verify the scaling process as applied to the example problem, the root-locus patterns from the full-sized vehicle
and the wind-tunnel model are compared to see if the root magnitudes scale with the frequency scale factor value. Selected

time-history results are given from a numerical simulation of an active-controlled wind-tunnel model to demonstrate the

utility of the scaling process.

Introduction

The eftbrt to develop the scaling method that is the

subject matter of this paper began in 1997 during the

latter part of the NASA-sponsored High Speed Research
(HSR) program. During this time period, the Technical

Concept Aircraft (TCA) shown in Figure 1 was being

studied. The HSR program dealt with several aeroelastic
issues associated with this configuration. For example,
the aeroelastic behavior of the TCA is dominated by its

low-frequency structural modes. These low-frequency
modes and the vibrations they cause, particularly

throughout the fuselage area, impact the pilot's ability to

fly the aircraft, passenger comfort and the design of the
flight control system. To address the issues of cockpit
vibrations and passenger comfort, a small, actively-
controlled, ride-control vane (rcv) was incorporated near

the pilot station later in the design of the aircraft. Its
function was to reduce low-frequency vibrations mainly

at the pilot station while minimally impacting the flight

control system.

A related aeroelastic issue was to stabilize, within the

aircraft's flight envelope, a critical flutter mode

involving the highly coupled motion of the massive
outboard engine pod that was supported by a pylon aft of

the main wing spar. With much effort, this task was
accomplished by aeroelastically tailoring the structure

primarily in the wing area. In spite of this tailoring
effort, there was concern that this flutter mode might
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reappear at some point later in the HSR program, either
from the inherent differences between the physical and
idealized structure of the aircraft or from some nonlinear

aerodynamic effects at transonic speeds. Should this
problem have arisen, the use of active controls was
identified as a reasonable solution to augment stability or

alleviate this or other flutter problems.

Both control system and aeroelastic issues were studied

by performing analyses and real-time flight simulations.
Although these studies produced encouraging results,
there are still many questions that are difficult or

impossible to answer solely with these "paper" studies.
For example, are control system stability, cross-

coupling, and flutter mechanisms affected by nonlinear

aerodynamics at transonic speeds? Such questions can
only be answered early in the aircraft's design phase by
conducting wind-tunnel tests of actively controlled,
scaled aeroelastic models.

Designing and building actively-controlled aeroelastic
wind-tunnel models is a time-consuming, complex, and

costly process. All the elements for designing a wind-
tunnel model for successful wind-tunnel testing need to

be in place before the physical model can be built.
Developing and analyzing a wind-tunnel analytical
model first is a good way to develop and validate all the

necessary elements that go into designing, building and

testing a physical wind-tunnel model.

In terms of actively controlled wind-tunnel models,

analytical models can be used to identify control surface
and sensor locations that will maximize control law

objectixes and minimize control system cross-coupling.

Analytical models can also be used to design control

laws for improving ride quality, augmenting flutter
stability, setting model attitudes, and alleviating gust
loads. Valuable insight into the design and mesting of
active-controlled physical models can be gained through
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closed-loop simulations using the analytical model. The

analytical model can also be used to identify the open-
loop and closed-loop flutter boundaries at the test
conditions of interest.

When an actively-controlled aeroelastic wind-tunnel

model is not a scaled representation of a full-scale
vehicle, an approach that has been used in the past is first

to design and build a physical wind-tunnel model and
then to develop a finite element model (FEM) based on

the physical model (Ref. 1 ).

If a detailed finite element model of a full-sized aircraft

were available, another approach based on a replica

scaling has also been used for developing a wind-tunnel
model. The dashed lines in the flow diagram of Figure 2
show the path for this approach. This approach

encompasses directly applying appropriate scale thctors

to thousands of entries in a large and detailed finite
element model. Applying this approach is a very time-

consuming process and, if composite materials are used
in the design of the aircraft, scaling can additionally

become a very complicated process. However, this
approach has the advantage of producing a scaled finite
element model for directly generating a wind-tunnel

analytical model and for designing a physical wind-
tunnel model.

If the wind-tunnel model is in the planning stages of
development and a scaled finite element model is not

immediately needed, the path indicated by the solid lines

in Figure 2 shows a more efficient approach. With this
approach, the wind-tunnel aeroelastic EOM can be
generated by scaling the full-sized aircraft aeroelastic
EOM. While engaged in the HSR program, this author

identified this approach in the aeroelastic analyses of the
TCA. This approach is the main contribution of this

paper.

This approach is especially attractive since it requires the
computation of significantly smaller matrices, it requires

much simpler scaling rules, and it avoids scaling the
much larger FEM with complicated scaling rules.
Nevertheless, the proposed approach for generating

aeroelastic EOM requires MSC.Nastran (Ref. 2) to

perform an Aeroelastic Response Analysis of the full-

Abstraction Programming, Ref. 3) to access and output
the appropriate matrices for the scaling process.

The paper begins with the implementation section that
describes the underlying assumptions, the scale factors,

and the computational rules for scaling the matrices
comprising the aeroelastic equations of motion. The

next section briefly describes the s-plane procedure for
fitting the frequency-dependent generalized aerodynamic
force coefficients (GAF). Also in this section, a

technique is presented to modify open-loop

aeroservoelastic (ASE) equations with a term to

represent a wind-tunnel model spring-mounting system.
The last section introduces the TCA finite element model

that exercises the scaling procedure. There is a

discussion on the scale factor values used in the scaling
procedure and also the sizes and pertinent flutter

parameters for both the aircraft and model. The

discussion continues by briefly outlining the procedures
used to generate and output the aeroelastic modal

matrices needed for the scaling process. Next, to verify
scaling process, root locus results are presented of the
full and scaled, open-loop aeroelastic equations

generated by Matlab (Ref. 4). Next, a Simulink model

(Ref. 5) incorporating the open-loop ASE model with
flutter suppression and ride quality control laws is
introduced to demonstrate the closed loop system.

Finally, open-loop and closed-loop time-history results
using Simulink are presented to complete the
demonstration.

Implementation of the Scaling Method

The scaling factors used in this paper follow from the
similarity laws described in Reference 6 and are given in
Table 1. As is customary in Mach scaled flutter models,

the assumption is made that reduced frequency, mass
ratio, and Mach number have the same values for both

the full-sized and scaled analytical models. The length,

velocity, and dynamic pressure scale factors in Table 1
are selected as the primary scale factors and all other
scaling factors are derived from them, as indicated by the

equations in the table.

The general form of the aeroelastic equation of motion

with control and gust inputs is given by

sized finite element model and DMAP (Direct Matrix

[-¢o2M + M(["ig..]+ I)[ (2n.L)2]+ZfQ(ik)]{q} :M-o) , q, +-_Q,.(ik)q, +_Q_,(ikju,_ =0 (l)

This equation is similar to the "aeroelastic response

equation" given in the Aeroelastic Analysis Users Guide
of MSC.Nastran in Reference 3. This tbrm of the

equation ignores the hinge moment terms, since the
hinge moment aerodynamics are assumed to be

negligible compared to the moment produced by the

actuator. In the above equation, the quantities M and M,

are the generalized modal mass matrices of the structure
and the control surfaces, respectively, of the full-sized

aircraft. In equation ( 1 ), the generalized modal stiffness

and structural damping matrices are represented by the

quantities M[ (2_:,)2 ] andM[-ig.l"(2nt;,)?..],

respectively. The quantities Q(ik), Q,.(ik) and Qg(ik) are
the reduced-frequency-dependent generalized

aerodynamic force (GAF) matrices of the full-sized
aircraft due to vehicle motion, control surface

deflections, and gust, respectively. The quantity_ is the
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dynamic pressure. Also in equation (1), the quantities q
and q<_are the generalized displacement vectors tbr the

flexible modes motion and the control surface input

motion, respectively. The quantity w_, is the gust
velocity input. The reduced and angular frequencies are

represented by the quantities k and o), respectively.

The following equations define the rotational and

translational sensor output quantities:

r : q_,.q (2)

z = Cktq (3)

respectively. The quantities q),. and _,/are the modal
deflection matrices for rotation and translation at the

various sensor locations on the structure.

M eff Plungeroltcol

M,, = st -*

In this paper, space limitations prevent giving

derivations of all the scaling rules; although many of the
scaling rules are straightforward and need little

explanation. In what follows, the helpful explanations

are given where needed for some of the more subtle
applications of the scaling rules.

The matrices in equation (l) are multiplied by the
appropriate scale t_actors appearing in Table 1 to obtain
the matrices needed to tbrm the symmetrical equations

of motion of the wind-tunnel model. The generalized

modal mass matrix, M, is scaled by multiplying the
matrix elements as follows:

M(?/'Pitchrowcol

$

S I

M qfFle._modes

14)

In equation 4, the bracket and arrows are shown to

indicate the pattern of the multiplication operations
applied to the matrix elements. The horizontal bracket
extending over the entire matrix signifies an operation

where all the elements in that matrix are multiplied by

the mass scale factor. The arrows pointing to a row and

a column signify additional operations wherein all the
elements in that row and then all the elements in that

column are multiplied by the length scale factor. This

notation is used in the remainder of the paper to describe
the matrix element multiplication operations with the
various scale factors.

Since the control surfaces involve rigid-body rotations
about hinge lines, the elements of the control surface

generalized mass matrix are multiplied by both st and s,,
as follows:

:Q(ik) (?['Plungetwwcol

Q,,,,,, ( ik ) = st --')

A"I ×A,.

M , ol'Phmgerow-

M ,,,,,, = .s.r ---)/ M ofPitchrow (5)

[ M ol" Flexmodes

The natural frequencies are multiplied by s t according to

{1;,,,,,,,}:.,t1.1;,)
The GAF matrix, Q(ik), and the other GAF matrices are

multiplied by st to scale a length dimension in the span
direction implicit in the GAF coefficient in every
element. As was done for the generalized mass matrix,

the pitch row and column elements are separately scaled

again by s/.

S!

Q(ik) ql'Pitchrowcol

$

S t

Q(ik ) o['Flexmodes

(7)

The control surface GAF matrix is scaled as follows:

A

iQc(ik ) (?f ell'J_g_"_)_' i

Q,,,.,,,,(ik): s, --@l Q< (ik)ofPitchrow l

LQ<(is<)of FSex,,,o&: 'J

_8)

The gust GAF matrix scaling matches control surface
GAF matrix scaling,,

s-'

[ Q _,( ik ) o['Plungerou;

[Q (ix.) of Fhxmodes

(9)
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To assure that the aerodynamic transport lag times are

correctly scaled to model size. the reference length used
in computing reduced frequency needs to be multiplied
by the length scale factor, st.

cref ,,,,,,,= cref * s; ( 10 )

C1)t ,,,,, = f _,; of plungecol

[
An expression for scaling the rotational sensor deflection

matrix can be deduced by noting that the derivative of
the translational deflection component of a mode shape

is the rotational deflection and is given by dz/dx. If the
elements of the rotational sensor deflection matrix are

defined in terms of derivatives, then the scaling of the

The scaling applied to the generalized modal mass

matrix automatically provides the proper scaling of all
the vibration mode shape deflections. Since the

generalized mass corresponding to the pitch row and

column is multiplied by the length scale factor, the pitch
column elements of the translational sensor deflection

matrix must also be multiplied by,

S I

$ (ll)

• ,;ofpitchcol _;tff'flexmodes ]

J: !

elements is achieved by applying the length scale factor
to the denominator of the derivative, i.e., dz/ (dx.s_}.
Based on these considerations, the scale factor of 1/s_

multiplies all the rotational deflection elements. The
rotational sensor deflection matrix is scaled as follows:

q9 ,,,,,, = [_, qf plungecol alp,of pitchcol:

T

sr

(12)

In the above matrix, the plunge elements in the first
colunm are all zeros since the spatial derivative of the
plunge mode is zero. The adjacent pitch column

elements are effectively multiplied by unity because the
two scale factors are inverses of one another.

Anal)_ical Model

The s-Plane Fit of the GAF Coefficients

To model the first-order state-space tbrm
aeroservoelastic

of the

equation, s-plane unsteady

6 A# t

Q(s) = ,4,, + A,(l,/v)s + A,(b/v)"s 2 + ,,=_,Is + (v/-b)J3,,,_: ]

aerodynamics is required. Using the scaled GAFs
defined in the frequency domain, the fitting algorithm in
ISAC (Interaction between Structures, Aerodynamics

and Controls. Ref. 8) was used to obtain the s-plane form
of the unsteady aerodynamics needed in the open-loop

equations of motion. Generally, the s-plane
approximation is applied to all the elements of the GAF

matrices, i.e., [QOk)], [Q,(ik)] and {Q_(ik)}. with the
typical element represented by

(13)

The matrices .4, through ,4_ appearing in Eq. (13)

represent the rational-function approximation of the
plane aerodynamics and are evaluated by a least-squares

fit of the tabular values of the generalized aerodynamic
force coefficients. The quantity b in the above equation

is defined as(creli,,,,,/2) and the quantities /3,,_: are

arbitrarily selected normalized lag coefficients.

Equations of Motion of a Spring-Mounted
Aeroservoelastic Wind-Tunnel Model

During the HSR program, the original finite element

model received from Boeing represented an
unsupported, free-free, full-sized TCA aircraft
configuration. However. the proposed wind-tunnel

model of the TCA configuration is configured to be

spring mounted in the wind tunnel. The easiest and the

most adaptable approach to accommodate the spring
mounting system modeling is to include a matrix term in
the generalized modal coordinates into the free-free,

wind-tunnel aeroelastic EOM. This approach allows

easy changes of the spring stiffness parameter in the
numerical simulation of the aeroelastic wind-tunnel

model. Furthermore, it avoids the much more difficult

task of regenerating the aerodynamics and the aeroelastic
EOM, if, instead, the spring constants were changed in
the FEM.

The basic form of the first-order open-loop ASE

equation appearing below is the same as the one given in
Reference 7. If the basic form of the state-space

equation is modified to include the term representing the
spring-mounting system, then the state-space equation of
the wind-tunnel model is given by
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Within the last term in the above equatton, the stiffness
matrix, [Ksprgconst], contains the spring stiffness

constants as diagonal elements. These constants can

0

0

0

i<,,+...... o o

X I

,X 2

." O_.r_ (14)

iX b
I

spring attachment points, provides the similarity
transformation of stiflhess matrix into the modal

generalized coordinates•

easily he changed as simulation parameters, when the
above equation is implemented in a numerical

simulation. Also in the last term, the quantity, qgv,,:_l,,,,
which is modal deflections in the vertical direction at the

+_7'(

The output equation for the vertical acceleration has the
form

]
"Yt

:x+

_'I). x_ -M--'(_,v,v' .... 0 0

0k.++,,,I<,,+,,t ,, 1
X(_ J

(15)

where M = M +q(h/v)2A2, K= K+_-A,) and

D=D+_(b/v)A I. M, K, and D are the

generalized mass, stiffness, and damping matrices,

respectively, including the effects of the unsteady

aerodynamics.

The angular rate and displacement output equations are

simply

? = _,.x 2 (16)

e = 0b t.r I (17)

Equations ( 16} and {17) are analogous to (2) and ( 3 ),
except that x: and.rr are the state vectors of the

generalized rate and displacement, respective ly.

Results and Discussion

This section consists of several components of a study to
exercise the scaling process, First, a description of the

finite element model is provided. Second, a brief outline
is given of the steps needed to complete the solid-lined
path of Figure 2. Third, root-locus results of the open-

loop first-order aeroelastic EOM are shown for a wind-
tunnel model and a full-sized vehicle. Fourth, a

description is given of a time-domain simulation that
demonstrates a closed-loop control system to suppress

flutter and improve ride quality.

Finite Element Model of the Full-Sized Vehicle

Under a contract to NASA Langley Research Center,
Boeing-Long Beach developed an MSC.Nastran flutter
analytical model based on the Technical Concept

Aircraft (TCA) (Ref. 9). A semi-span FEM of a
strength-sized TCA was used as the basis for a wind-

tunnel model. To accommodate the anticipated additions
of instrumentation and other hardware in the physical

wind-tunnel model, the distributed mass of the fuselage
was arbitrarily assumed to be twice as large as in the
full-scaled aircraft. This additional mass had no

significant effect on the critical flutter mode.

The only modifications made to the FEM received from
Boeing were the additions of a chin fin and a ride control
vane. The 9,500 node semi-span finite element model is
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shown in Figure 3, where the accelerometer locations

and control surfaces relevant to this study are indicated.
Although many more acce[erometers are usually used
when testing aeroelastic models, the accelerometers

indicated are the only ones proposed for the active

control system of the wind-tunnel model.

Generating the Aeroservoelastie Analytical Model

Using the full-sized, semi-span aeroelastic FEM of the
TCA, MSC,Nastran analyses were performed initially to

generate the prescribed rigid-body and control surface

mode shapes needed for flight control applications.
Using DMAP. these mode shapes were then combined
with the flexible modes in the MSC.Nastran Aeroelastic

Response Analysis and used to generate and output the

generalized mass matrix, the natural frequencies, the
frequency-dependent GAF matrices, and the modal
sensor deflections.

Table 2 gives the target model size, the dynamic pressure
(near flutter), and the speed of sound for the test medium

selected for the proposed wind-tunnel aeroelastic model
and the corresponding values for the full-sized flight
vehicle. Based on the values of Table 2 and the scale

factor equations of Table 1, Table 3 contains the
computed values of the scale factors used to develop the

desired analytical model.

With the scaling rules given in the Implementation of the

Scaling Method section, the matrices that were output by
the Aeroelastic Response Analysis are then scaled by the

scale factors given in Table 3. As a product of the
scaling process, some values of some of the key physical
quantities are given in Table 4.

Finally, the first-order space-space aeroservoelastic
equations are ibrrned using the procedure and equations

given in the Analytical Model section.

Open-Loop Root Locus Analysis

An example problem was constructed to check the
scaling rules for the open-loop aeroelastic EOM. If

successful, this example problem will predict the correct
root-locus pattern with increasing dynamic pressure of
the scaled wind-tunnel model. Furthermore, if the root-

locus patterns scale correctly, then, of necessity, the

respective flutter frequencies and the respective flutter
dynamic pressures will also scale correctly.

All the eigenvalues results at the various dynamic
pressures for both the vehicle and the scale model were

computed at a single analysis condition of 0.95 Mach

number and with a 0.02 structural damping applied to the

flexible modes. Figure 4 contains the vehicle root locus
at the seven dynamic pressures indicated in Table 5.

Figure 5 contains the scaled wind-tunnel model root
locus at the dynamic pressures also indicated in Table 5.
Both figures show only the first seven modes of the

respective state-space aeroelastic EOM that contain two
rigid-body and 20 flexible modes.

Careful inspection of Figure 4 and 5 reveals that the

root-locus pattern for the full-sized TCA and the root-

locus pattern for the scaled wind-tunnel model are
identical. For each corresponding pair of eigenvalues

from Figure 4 and Figure 5, the ratio of the magnitudes
of real part to real part and imaginary" part to imaginary

part is identically equal to the frequency scale factor.
This agreement constitutes a successful check of the

scaling process.

Time Simulation of Closed-Loop TCA Wind-tunnel
Model

This section of the paper employs the ASE EOM of the

scaled wind-tunnel model to perform selected time-
domain numerical simulations. These simulations are

typical of those that might be performed before the

wind-tunnel model is designed and built. They actually
include investigations of model responses under various
closed-loop conditions.

A Simulink model (Ref, 5) was developed tbr the
purpose of performing time simulations of the semi-span
wind-tunnel model of the TCA with an active control

system. The Simulink block diagram of the simulation
model is given in Figure 6. The top portion of the figure
shows the actuators, aeroservoelastic state-space model

including the spring mounting-system modeling, and the
sensors (accelerometers), while the bottom portion

shows the feedback controllers. Figure 3 shows the
locations of two vertical springs for the mounting

system.

Figure 7 shows the gain and transfer function blocks of
the two control laws. Both control laws act as rate

feedback systems with a Iov_pass filter to attenuate the

effects of the higher frequency structural modes. The
top controller in the figure is designed to stabilize the
critical flutter mode and uses a vertical wing
accelerometer as the sensor. Its location is near the

hinge-line of outboard trailing edge flap which is used as

the control effector. The bottom controller in the figure

is designed to improve ride quality by reducing fuselage
motions at the pilot station. This controller uses a
vertical accelerometer near the pilot station as the sensor

and the ride control vane just tbrward of the pilot station
as the control effector.

The locations of all the accelerometers and control

effectors are shown in Figure 3. The horizontal tail as

indicated in the figure is the third control surface and its
function is to provide disturbance inputs into the model.

To demonstrate the flutter mode stability augmentation
and ride quality control systems, several time histories
resulting from applying a doublet excitation via the
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horizontal tail are presented. Figure 8 shows the time
history of the doublet excitation signal which was used
to excite both the open- and closed-loop simulation

models. With both control loops open, at a Mach of 0.95

and at dynamic pressure of 150 psf, the model is

unstable as shown in Figure 9 by the divergent time trace
of the acceleration at the wing flap location. This
simulation result confirms the unstable root in the plot of

Figure 4.

Figures 10 and I l show the convergent time histories of

the accelerometers at the same wing flap location and at

the pilot-station location, respectively, indicating a stable
system when the two loops are closed. In Figure 12 and

13, only the flutter suppression loop is closed. From the
likeness of Figures 10 and 12, the ride quality control
law appears to have very little effect on the response of

the wing. In comparing the accelerations of Figures 11

and 13, the magnitude of peak negative accelerations at
the pilot station is increased by 33% by opening the loop
of ride quality control law.

Concluding Remarks

A method of scaling was described to obtain the

aeroelastic equations of motion of a wind-tunnel model.
To implement this method, a set of simple scaling rules
involving the modal matrices were given to aid in

transforming the full-sized aircraft aeroelastic equations
of motion to that of a wind-tunnel model. This approach
avoids proceeding with a complicated set ofsca_ing roles

to scale a multitude of discrete coordinate equations of
motion of a detailed finite element model. In addition,

the manner of incorporating analytically a model support

system with modal stiffness in the formulation was also
provided. A fhll-sized, semi-span finite element model

of the TCA of the HSR program was introduced to

exercise the scaling process. A brief outline of the steps
involved in generating the aeroelastic EOM of the full-
sized vehicle, scaling process, and forming the first-
order equations of motion of wind-tunnel model was also

provided. The scaling process was verified by
comparing the respective root-locus derived from the
full-sized-vehicle aeroelastic EOM to the root locus from

the scaled wind-tunnel model. Selected time-history

plots from the simulation of an actively controlled wind-
tunnel model were given to demonstrate the utility of the

scaling process.
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Figure 2. Flow Diagram of the possible paths for

generating a wind-tunnel aeroelastic EOM.

Figure 1. Drawing of the supersonic Technical Concept
Aircraft.

Table 1. Description of the physical

quantities, units and scale factor symbols or
e_ uations.

Physical

Quantities

l_ength

Velocity

Dynamic
Pressure

Density

Mass '

Time

Mass Moment
of Inertia

Frequency

Force

Units

l

l/t

m/(It:)

m/fl

111

t

ml '

Scale
Factors

s)

S_

G

sl, = s,, / s,:

s,,,:s,, s/

S, = $t / S,

S1 :GS/

l /t S t : S,,/S_

Table 2. Values of the physical quantities
for model in heavy gas and aircraft in air.

The model values are the desired or target
quantities.

Physical Quantities Model Aircraft

Mach " 0195 0.95

Length, ft. 16.0 326.0

Flutter dynamic 125.0 450.0

pressure, psf

Speed of Sound, fps 548.0 1026.0

Table 3. Description of the physical
quantities, symbols, and values of the
different scale factors.

Physical
Quantity

Length

Velocity

Dyn. Pressure

Density

Mass

Time

Mass Moment

of Inertia

Frequency

Force

Scale
Factor

s,

S_

S.,

S,

$/

S t

SF

Value

0.0491

0.534i

0.2778

0.9737

1.151xlO _

0.0919

2.773x10 -I

10.88

6.691xl0 z
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Table4.Valuesof physicalquantitiesformodel
inheavygasandaircraftinair. Modelvaluesare
derivedfromscalingprocess.
PhysicalQuantities Model Aircraft

Half Mass, lb. 50.23 436445.

1_'Mode Freq., Hz. 12.087 1.11

Flutter Freq., Hz. 17.2 1.58

Ref. Length, inl 14.88 303.035

Table 5. TDT and equivalent TCA flight
conditions at which roots were evaluated for

open-loop plant model root locus analysis.

Wind-Tunnel Model
Conditions

Mach No. = 0.95,

Velocity = 520.6 fps

Equivalent TCA

Flight Conditions

Mach No. = 0.95,

Velocity = 974.7 fps

Dynamic P_ssure, Dynamic P_ssu_,
psf psf

50. 180.

75. 270.

100. 360.

125. 450.

150. 540.

175. 630.

2O0. 720.

AIAA 2002-1598

Ride Control
Vane

g
Springs

' Acceleromele_

k Horizontaf

i Figure 3. Semi-span finite element model

i of the TCA with relevant accelerometer,

i control surface and mounting springlocauons indicated.

i ........................................................... :
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Figure 4. Open-loop root locus of the full-sized TCA
with respect to dynamic pressure at Math = 0.95 and
velocity of 974.7 fps.
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Figure 5. Open-loop root locus of the wind-tunnel
model with respect to dynamic pressure at Mach = 0.95
and velocity of 520.6 fps.
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Figure 6. Simulink model of the TCA wind-tunnel model with control system.
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Figure 7.

FluEer Stability AugmentaUon
Transreq Function

4.71245

=Z+4.7124s+8882.6

NzOBTE (g)

_(2D

72.2566s
s2+72 2566s_5221

LIzPS ( !__'.l

_::1de Quahty Transfer Func_ion

Flutter stability augmentation and ride quality control laws.

2

1

Input
command, u

deg
-1

Figure 8.

-2

I I

[

I I
0 1 2 3

Time, sec

Horizontal tail input command, M =

0.95 and q = 150 psi'.

2 I '1

i : L

............[,1_ i i_{L:, : .......................

-2 1 t
0 t 2 3

Time. r:_ec

Figure 10. Wing acceleration with both loops

closed, M = 0,95 and q = 150 psf.

t I

t I
-5

0 1 2 3

Time sec

Figure 9. Wing acceleration under open-

loop conditions, M = 0.95 and q = 150 psf.

1.0

0.5

0
Nz, g

°05

-_,13

I I

! r :_:
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m

I I
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Figure 11. Pilot station acceleration with both

loops closed, M = 0.95 and q = 150 psf.

2
1 1

t#,*:li! J!_....., .........
!:_']il'

2 t I......................J
0 1 2 3
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Figure 12. Wing acceleration with flutter

suppression only, M = 0.95 and q= 150 psf.

1.0

0.5
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Figure 13. Pilot station acceleration with

flutter suppression only, M : 0.95 and q =

150 Dsf.
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